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Molecular transport processes are governing in many problems associated with-the flow 
of high-temperature multicomponent gas mixtures. Thus, a flow with a partially dissociated 
and ionized multicomponent gas is realized in problem of viscous heat-conducting gas flow 
around bodies in practically the whole flow domain outside the bow shock on the most heat- 
stressed section of the trajectory, where convective heat transfer predominates, during en- 
try in the atmosphere of planets of the solar system. Molecular transport processes in such 
a mixture govern directly the molecular heat and mass fluxes, the viscous friction force, as 
well as the rate of thermochemical destruction of the streamlined surface [i]. Transport 
processes play an important role in the flow of a weakly ionized plasma in a MHD generator 
[2], gas-phase nuclear reactors [3], and other problems. Consequently, a sufficiently rigor- 
ous and complete study of the behavior of the transfer coefficients in a broad temperature 
and pressure range is a problem of practical importance, and even more so since experimental 
investigations of multicomponent plasmas at high temperatures are related to great complexi- 
ties in the diagnostics. It is also important to note that a study of all the necessary 
properties of a complete set of transfer coefficients has not been performed up to now be- 
cause of the complexity of the appropriate formulas given by the kinetic theory of gases in 
the exposition in [4]. Of the experimental papers, [5-7] should be noted, in which the in- 
vestigation of certain transfer properties of air, nitrogen, hydrogen, and argon was per- 
formed (mainly the heat conduction and viscosity coefficients only). Numerical computations 
were carried out in [8-11] for the transport properties of ionized gases by kinetic theory 
methods [4] with high approximations taken into account in a polynomial expansion of the dis- 
tribution functions in Sonin polynomials. However, for flows of chemically equilibrium high- 
temperature gases for which effective coefficients are introduced in the hydrodynamics equa- 
tions with additional terms associated with component transfer, heat liberation in reactions, 
and the use of quasineutrality conditions of the ionized mixtures taken into account (a 
strict determination of the complete set of effective transfer coefficients is given in [12, 
13]), computations of all the effective coefficients in the hydrodynamics equations have 
never been performed successively. Up to now there is not sufficient information in the lit- 
erature about the influence of any coefficient in any element temperature, pressure, and con- 
centration range, nor about the role of taking account of high approximation in the computa- 
tion of the transport coefficients for determining the heat flux, the component diffusion 
fluxes, and the viscous friction force [14]. 

The molecular-kinetic approach to describing transportprocessesingas mixtures, which is 
based on solving the system of Boltzmann equations for the component distribution functions by 
the Chapman--Enskog method, permits the derivation of the complete set of hydrodynamics equa- 
tions and obtaining expressions for the known particle interaction potentials for all coef- 
ficients in these equations [4]. The problem of calculating the transfer coefficients for 
such an approach is separated from the solution of the fundamental hydrodynamic problem: The 
transport coefficients are functions of just the temperature, pressure, and chemical composi- 
tion. The known procedure for expanding the distribution function perturbations in Sonin poly- 
nomials results in an infinite system of algebraic equations, for which the results of its 
solution depend on the number of terms ~ in the expansion. The number of terms ~ for which 
the necessary accuracy of the transport coefficients is assumed depends on the number of 
conditions and, in particular, is determined by the nature of the behavior of the component 
interaction section. For neutral gas mixtures the first nonzero approximation turns out to 
be completely adequate. For ionized gases and gas mixtures containing a volatile component, 
the number of terms ~ assuring convergence will grow: Thus, utilization of the least nonzero 
approximation in computing the heat conduction coefficient of ionized air with a molar elec- 
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tron concentration of r E ~ 0.5 results in a =60% error, and in an error of =ii% [15] in the 
computation of the heat conduction coefficient of a mixture containing a volatile component 
at T = 200~ For a fully ionized gas the number of approximations ~ assuring the value of 
the transport coefficients with 1% accuracy and agreement with the asymptotic values obtained 
in solving the Fokker--Planck equations for an ideal plasma [16] is four. 

The expressions for the transport coefficients have the form of a ratio of determinants 
of the order N~ + 1 and N~ where N is the number of mixture components in the traditional ap- 
proach to the solution of algebraic equations obtained in the Chapman--Enskog method by using 
series expansions in Sonin polynomials. The order of the determinant is raised by N when the 
order of the approximation ~ is increased by one. This produces substantial numerical diffi- 
culties in computing the transport properties of multicomponent mixtures in high approxima- 
tions. In a different approach to the solution of the initial algebraic system of equations to 
determine the coefficients of the Sonin polynomial expansions, proposed in [17, 18], the mass 
transport equation of the components and the energy transport equation are written in a form 
solved forlthe "force" vectors in terms of the diffusion and heat fluxes. In such a repre- 
sentation the expressions for the transport coefficients in high approximations have a number 
of advantages over the expressions written in the traditional form: For a given approximation 

the order of the determinants in the transport coefficients is reduced by a number equal to 
the number of mixture components; the procedure of double inversion of the matrices in any 
approximation, which takes place in the traditional calculation of the true heat conduction 
coefficient of the mixture, is eliminated completely [4]; substantially simpler resistance 
coefficients Aij(~) , for the calculation, written in terms of the binary diffusion coeffi- 
cients~Oij(l ) in a first approximation and correction factors ~ij(~) dependent on the high 
approximations (because of writing the mass transport equations of the components in the form 
of Stefan--Maxwell relations in any approximation ~) are introduced in place of the multicom- 
ponent diffusion coefficients Dij(~) ; simpler thermodiffusion ratios kTi(~) for the calcula- 
tions are introduced in place of the multicomponent thermodiffusion coefficients D~. A modi- 
fied form of writing the transport equations is obtained for arbitrary flows of multicompo- 
nent mixtures in the most simple form, which permits execution of extensive computations of 
the transport coefficients in this paper in a broad range of pressures, temperatures, and con- 
centrations of the elements. The new form of the transfer equations is quite convenient for 
the numerical solution of diverse hydrodynamic problems [19, 20]. The structure used in this 
paper for the transport equations is moreover obtained phenomenologically also, by using 
methods of the thermodynamics of irreversible processes [21, 22]. 

i. SYSTEM OF NAVIER--STOKES EQUATIONS FOR MULTICOMPONENT GAS MIXTURES 

Let us consider an N-component gas mixture. For the practical computation of flows with 
chemical reactions proceeding arbitrarily, it is convenient to extract L independent (basis) 
components, for which, for instance, the chemical elements and an electronic component can be 
taken, and R = N- L components (reaction products). Let Bj (j = 1 .... , N) be the chemical 
symbol of the basis component, and A i (i = L+I, ..., N), the symbol of the reaction product. 
Then without limiting the generality the linearly independent stoichiometric equations of the 
reaction can be written %n the form 

L 

A i = ~  v~jBj- -q~(T) ,  / = L +  1 . . . . .  N, ( 1 . 1 )  
i=1 

where vij are the stoichiometric reaction coefficients, and qi are the heats of reaction. In 
conformity with (i.i), the mass and charge conservation laws in the reactions will have the 
form 

L L 

rni = ~, vijmj,; ei = ~ vijej,, (i. 2) 
j=1 j=1 

where m i is the mass of the i-th particle, and ei is the charge of the i-th particle. We de- 
termine the element concentratxons c j  ( j  = 1,  . . . ,  L) and t h e  e l e m e n t  d i f f u s i o n  f l u x e s  J~  ( j  = 
i, ..., L) in conformity with the stoichiometric mode of writing the reaction (i.i) as fol- 
lows 

N N L 
, mj mj ~f~ , 

= cj + E § = 1,, 
k=L+l r~ k=L+1 k ~i'= 

L 

E = o. 
j = l  

(i. 3) 
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Then the systemof Navier--Stokes equations can be written in the form [12] 

fr 

o_2o 
Ot + div ( p v ) = O '  p v = X  phvk; 

h = l  
(1.4) 

dc~ N 
p ~ +  dlvJj  = 0 ,  9 =  Pk ( ] = 1 ,  . . . .  L); 

h = l  (1.5) 

de i 
p---/U + div l~ = wi ( i = L + I  . . . . .  N); ( 1 . 6 )  

dv 
P - ~  = Z phFh - -  Vp + div ~'; ( 1 . 7 )  

N 

p-y/- h + = - 3 7 - +  pkvkFh+ d i v ( ~ . v - - J q ) ;  
h = l  

(1.8) 

N N N 

p = - ~  " -~=  ,: p =  n~mk,: n = n~,~ (1 9) 
= h ~ l  h ~ t  

where Pi = nimi, ni, vi, ci = Pi/9, xi = ni/n, Ji, wi, Fi, hi are the mass density, the number 
of particles per unit volume, the mean statistical veocity, the mass concentration, the molar 
concentration, the mass diffusion flux vector of the i-th components, the rate of mass origina- 
tion for the i-th component per unit volume per unit time, the mass force acting dn the i-th 
component, the specific enthalpy of the i-th component, respectively; 0, v, p, h, T, m, n, 
Jq, T are the density, mean-statistical velocity, pressure, enthalpy, temperature, mass, the 
total number of particles per unit volume, the total heat flux vector, the viscous stress ten- 
sor of the mixture as a whole, respectively, and k is the Boltzmann constant. Equation (1.4) 
is the continuity equation for the mixture as a whole, (1.5) is the diffusion equation of the 
elements, (1.6) is the diffusion equation of the component-reaction products, (1.7) is the 
momentum equation for the mixture as a whole, (1.8) is the energy equation for the mixture 
as a whole, and (1.9) is the equation of state for a mixture of ideal (not dense) gases. By 
virtue of the charge conservation law (1.2) in the chemical reactions (i.i), we have 

N 

Z pe E ~* * m E , 
e~ = viEeE, Pe = nheh = ~ ~E," cE = --i-- XE, 

where the subscript E denotes electron, and Pe is the volume charge density. 

To close the system of equations (1.4)-(i.~), it is necessary to have explicit expres- 
sions for the "fluxes" Ji (i = i, ..., N), Jq, T, wi, the so-called transport equations. 
Phenomenological and kinetic [21, 22] approaches yield expressions of perfectly identical 
structure for the transport equations. 

The equation for the viscous stress tensor ("momentum transport") is 

2 1 { Ov= Ov~ 
�9 a~ = - -  ~ ~($)div vSa~ + 2 ~ ( ~ ) e ~ ,  ear = ~ ~7~x~ + 0-~-~ ) '  ( 1 . 1 0 )  

where  T~8 a r e  t h e  v i s c o u s  s t r e s s  t e n s o r  c o m p o n e n t s ,  e~B a r e  t h e  s t r a i n  r a t e  t e n s o r  c o m p o n e n t s ,  
and ~(~) is the mixture viscosity coefficient in the approximation %. The presence of chemical 
reactions causes the appearance of an additional member in (i.i0) with the volume viscosity 
coefficient. However, for aerodynamic problems this member is negligible [23]. The mass 
transport equations of the separate components are written according to [17], in a form that 
is solved at once for the "forces" in terms of the fluxes: in any approximation ~. Following 
the writing of (1.5) and (1.6), we represent the equations for the diffusion fluxes of the 
components separately for the elements J~ (j = i, ..., L) and separately for the reaction prod- 
ucts Ji (i = L+I, ..., N) by eliminating Jthe diffusion fluxes of the component-elements Jj 
(j = i . . . . .  L) by using (1.3): 

L N 

- + Z + Z * ' s' �9 ' 0hjJh, h= m" (i.ii) 
l=1 k~L+l  

(] = l . . . . . .  L); 
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L N 
*~ 0 ' 

/ = 1  h : L + l  
( i = L +  l , . . . , N ) ,  (i.12) 

where the vectors of the diffusion forces d k equal 

d~ = VX~ + kv~ v In p + k~(~)  V In  T - -  - 7  pF~ - -  p~F~ 
i = l  

H e r e  

(}~ = l . . . . .  N ) .  

N 

AT~ ~ = n ~ j  (1)/~j (~); /~J (D = [1 + qqj (~)l-~; & = ~ z~&~; 
h = l  

lgpi = xi  - -  ci; {}~=A~vhy-t-  x~ A~ - -  = 

5 

Aij are the resistance coefficients, kpi are the barodiffusion coefficients, kTi are the ther- 
modiffusion ratios, ~Ti is the thermod~ffusion factor, ~)ij(1) are the binary diffusion coef- 
ficients in a first approximation, and ~ij (~) are correction factors tO the resistance coef- 
ficients which depend on the order of the approximation ~ [17]. 

The equation for the total heat flux transport has the form 

L N 

h = l  I : 1  h = L + l  

w h e r e  q i s  t h e  r e d u c e d  h e a t  f l u x  e q u a l  t o  

Here X (~) 
Of the temperature gradient when all the diffusion fluxes vanish. 

The transport coefficients in these equations have the following form: 

N L 

q = - - h ( ~ ) V  T + k T  ~ aTh($)J 'h- - : - -  X (~ )V  T + k T  ~ o:T,J ~ ' +  
h = l  /=1  

N L 
t 

h=L+l j=l 

is the so-called "true" heat conduction coefficient, i.e;, the coefficient in front 

the coefficient of "true" heat conduction 

0 x~ 0 . . .  0 
xr q~;1 q1~2 ~ . .  qr l ,~ ' l  

o q~;1 q ~  . . .  q ~ - i  

0 q ~ r ; 1 , 1  tlrs--[--l'2 . . .  q } ~ - 1 , [ - 1  

75 nk 
)~ (~) - -  8 clet II qrs/I 

$ ~ > 2  

~(~) - -  o 

( 1 . 1 3 )  

the thermodiffusion ratios 

0 x~ 0 . . .  0 

5 t 1,0 1,1 1,2 _ 1 , [ - - 1  
- I qri qrs qrs �9 �9 �9 kTi (~) = 2 det [I qrs [[ [ qrs 

~>~2  [ �9 . . 
i ~-1o qS:la k~i(t)-----0 (i - -  i . . . . .  N ) [q~ i  ' ._~-1,2 . ~ - 1 , [ - ~  

qrs � 9  ",Its 

(i.14) 

the correction factors ~ij(~) to the resistance coefficients 

{0,0 q  111 { (~) = 2 ~ j  (~) I _m-~ 
- - I qri qrs q,,s " 

~ > ~ 2  3 ~ detliqrs/{ { . . . 

g-1 0 _~-1,1 r  0 (i ,  j = i . . . . .  N ) { q r i  ' q}~ - l , t -1  �9 t i t  $ 

(I.15) 
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The expression for the viscosity coefficient has the form obtained in [8] 

(~) 
! o . . .  o 

5 n ~ ~0.~-1 
2 det ll"qrs 11 r V ~ r r  ~o;o qOr.~l 7Kro 

^1.o ^~,~ "2!,~-', q,~ q~-s . . -  qrs 

~-~,Oq~ ~ - ~ a . , .  ~2-~,~-~ 

(1.16) 

In these expressions the qmp and ~mp are square matrices of order N x N comprised of a mp and 
qmT, and m, p = 0, i, ...,~ -- l,~et[ lqrsI] is the determinant of the matrix compii3ed from 
th~ matrix of the numerator by eliminating the first row and first column The elements ~mp 
are expressed In terms of the coll~sion integrals Q~,S(T) of different pairs of components by 
a known method [4, 8]. In this paper the expression~ qmp differ from those presented in [8] 
by the factor (mj/2~kT)I/~n-1 and have the form 

( 
m+l--I Im lift \l-]-2t--1 m+l~-(l-2)-2t 

X ~.~ t jJ ~,J 
t=O (mil'mk -~- i )  m-}-p+l/2 S=l~ lil70fd'S 

The e x p r e s s i o n s  f o r  aSso d i f f e r  from those  [8 ]  by the  same f a c t o r .  V a l u e s  of  the  c o e f -  
f i c i e n t s  ~Ts are presented in [24]. 

7,s The collision integrals Qi" of the required orders ~ and s are computed in the known 
scattering sections by the form3ula 

co 

4 ( 1 + t )  S 
Q~}S (T) (s %- t)! [2l -+- ~ - -  (--  1/]  

o 

where the section Q~i-" can be computed if the potential of pairwise interaction of the particles 
(rij) is known by ~hich the angles of particle deflectionxij [4] are computed in the classical 

case, and the scattering phases are computed in the quantum-mechanical case [25]. For the 
classical case [4] 

= S - 

0 

It is seen from the expressions presented for the coefficients ~(~), kTi(~) , ~ij(~) 
that the order of their determinants equals N(~ -- I) + 1 and N(~ -- I) and is less by N than in 
the corresponding coefficients obtained by traditional means [4]. 

2. NUMERICAL COMPUTATION OF THE TRANSPORT COEFFICIENTS ~(~), X(~), kTi(~), ~ij(~) 

OF IONIZED AIR IN HIGH APPROXIMATIONS 

For the mass transport equations presented in Sec. 1 for the momentum and energy compo- 
nents, a method and program for computing the transport coefficients ~(~), X(~), kTi(~) , ~ij(~) 
of multicomponent gas mixtures were developed from (1.13)-(1.16) to a fourth approximation in 

inclusively, in a broad temperature and pressure range. The numerical computations were 
executed for a chemically equilibrium partially ionized mixture of nitrogen and oxygen with 
the component~ O, N, E, 02, N2, NO, N § 0 +, NO + taken into account for a given element com- 
position of c o = 0.244 and C~ = 0.756 in the 300 ~ T ~ 20,000~ 
102 Pa ~ p ~ 1.013"107 Pa pressure range. The equilibrium constants were approximate~ from 
tabulated data [26]. Double ionization and nonideal effects w~re not taken into account in 
the computation of the composition. The collision integrals O~ s of the required orders l -lj 
and s were taken from [i0] for all component pairs. 

The identities ~ ~i(~)=0,~j(~) = ~jz(~) were used in numerical computations of the coef- 

ficients kTi(~) and ~ij(~) and the calculations were performed for those components whose 
concentrations and influence on the mixture properties are not negligible. The results of 
numerical computations of the coefficients ~(~), X(~), kTi(~), and ~ij(~) in different ap- 
proximations are represented in Tables 1-3. At low temperatures (up ~o the beginning of 
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TABLE 1 

~(~), mP 

ip=O,Ot ~=t,0 

T, *K , [ ~=t ~=2 XE a ~=t [ ~=2 x E 

5000 i , 1 , 588  1,59t 4 ,3 . to -  t,571 1,574 o 
6 000 6,10-t0 -a[ t,785 1,789 2,t4.t0-a[ t,8471t,850 6,4.10" 
7 000 4,44. t0 -a[ t,996 2,003 6,65.t0 -4] 2,10t [ 2,t05 2,25.1( 
8000 0,0225 I 2,138 2,147 2,39.10-si2,30t[2,307 5,6.10" 
9000 0,0772 [ t,951 t,967 8,37.t0-a[2,508]2,516 1,t9.1( 

t00O0 0,t89 [ 1,356 t,372 0,0234 [2,65012,66t 2,59.1( 
II 000 0,330 [ 0,697 0,708 0 ,0538  2,611[2,634 5,73.t( 
12 000 0,431 I 0,293 0,300 0,t05 [ 2,340 [ 2,363 0,01t~ 
13 000 0,476 [ 0,t26 0,t31 0,177 [ 1,871 [ t,896 0,02t~ 
14 000 0,491 I 0,0701 0 ,0742  0,260 I 1,35t [ 1,374 0,036~ 
t5 000 0,496 [ 0,0533 0 ,0578  0 ,340  [0,905 [ 0,924 0,057t 
t6 000 0,498 I 0,0503 0 ,0552 0,402 I 0,585 [0,066 0,083! 
t7 000 0,499 I 0,0526 0 ,0582  0,443 I 0,384 10'396 0.tt7 
18 000 0,500 [ 0,0574 0 ,0636 0,468 [ 0,270 [ 0,28t 01155 
t9 000 0,500 I 0,0634 0 ,0704  0,48t I 0,209 / 0,221 0;196 
20 000 0,500 I 0,0702 0,078t 0,489 ] 0,t79 [ 0,t9t 0,240 

p=ioo,o 

1,5t8 1,52t 
1,799 t,803 
2,069 2,073 
2,340 2,344 
2,608 2,612 
2,855 2,855 
3,070 3,078 
3,278 3,286 
3,509 3,464 
3,572 3,584 
3,607 3,622 
3,540 3,559 
3,368 3,393 
3,107 3,137 
2,786 2,822 
2,440 2,480 

TABLE 2 

,=0,01 

%(~), W/(~ 

T, ~ ~=2 

5 000 0,252 
6 000 0,379 
7 000 0,479 
8 000 0,542 
9 000 0,520 

t0 000 0,424 
t i  000 0,352 
t2 000 0,341 
t3 000 0,372 
14 000 0,423 
t5 000 0,484 
16 000 0,55t 
t7 000 0,624 
i8 000 0,703 
i9 000 0,787 
20 000 0,877 

~=3 

0,253 
0,38t 
0,50t 
0,606 
0,630 
0,578 
0,551 
0,587 
0,668 
0,774 
0,894 
t,026 
t,~68 
t,o22 
t ,487 
1,662 

~=~ 

0,253 
0,387 
0,5t4 
0,6t6 
0,635 
0,580 
0,551 
9,587 
0,669 
0,774 
0,894 
1,026 
1,t68 
t,322 
1,487 
t,622 

~=2 

0,221 
0,287 
0,402 
0,545 
0,677 
0,789 
0,863 
0,888 
O,890 
0,905 
0,950 
1,025 
t,i22 
1,236 
t,362 
t,498 

~p=i 

0,22t 
0,287 
0,403 
0,55t 
0,717 
0,89t 
t,045 
1,16t 
1,259 
t,372 
1,5t8 
1,694 
t,895 
2,1t5 
2,352 
2,604 

~=~ 

0,22t 
0,287 
0,404 
0,563 
0,735 
0,908 
1,058 
1,169 
t,263 
t,375 
t,520 
t,696 
t,896 
2,tt6 
2,353 
2,605 

t=2 
i 

0,t87 0,240 
0,298 
0,376 
0,490 
0,652 
0,864 
1,106 
1,363 
1,63t 
t ,904 
2,179 
2,453 
2,729 
3,012 
3,307 

@=i00 

0,i88 
0,24t 
0,298 
0,376 
0,489 
0,654 
0,870 
t , t34 
t,449 
1,8t2 
2,218 
2,660 
3,132 
3,633 
4,t63 
4,723 

~=~ 

0,188 
0,24i 
0,298 
0,376 
0,489 
0,654 
0,880 
t,t58 
t,484 
1,854 
2,263 
2,705 
3,t75 
3,674 
4,202 
4,759 

ionization), the computed values of ~(~) and I(~) are in good agreement with the data in [27]. 
At high temperatures (in the partial-ionization domain) the computed values of ~(~) and I(~) 
are in good agreement with the results of computations [i0] (for the identical air composi- 
tion), which are, in turn, in good agreement with experimental data [5], and with the Spitzer 
theory in the domain of full ionization [16]. 

To investigate the convergence of values of the transport coefficients as the number of 
the approximation ~ increases in the whole temperature and pressure range under consideration, 
the computations were performed for all values of ~ = I, 2, 3, and 4~ Convergence of the 
coefficients ~(~) and I(~ for air was examined in [8, i0], while convergence of the ther- 
modiffusion coefficient D~(~) was investigated in [8]. A detailed investigation of the con- 
vergence of the coefficients kTi(~) and ~ij(~) for a multicomponent ionized mixture has not 
been performed earlier in general. 

As is seen from Table l, for neutral and partially ionized air (x E ~ 0.4), the viscosity 
coefficient can be calculated to ~3% error in a first approximation (~ = i). For strongly 
ionized air (x E ~ 0.4), a computation of the viscosity coefficient in a first approximation 
results in up to 10% error; however, the second approximation already turns out to be suffi- 
ciently exact (a further increase in ~ does not affect the accuracy of computing ~(~) in 1% 
limits). 

Computation of the coefficient I(~) in a second approximation for weakly ionized air 
yields an error of ~5%, while for a strongly ionized mixture (x E = 0.5, p = 0.01), the 
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value of %(2) in a second approximation turns out to be approximately halved as compared with 
the exact value. However, the third approximation already turns out to be sufficiently exact 
(X(3) agrees with %(4) to 1-2% accuracy in the whole range under consideration). 

Convergence of the coefficients kTi(~ ) and ~ij(6) is of a different nature for a differ- 
ent degree of ionization for different kinds of components. Computed values of certain of these 
coefficients are presented in Table 3 for p = 1 and four values of the temperature, corre- 
sponding to very weak, partial, and full ionization. As is seen from Table 3, for many com- 
ponents the coefficients kTi(6) and ~ij(6) are negligible in the whole temperature range. 
Only kTc(6) , kTE(6) , �9 Ec(6) , ~En(6) (.the subscripts c, n, and E denote charge, neutral, and 
electron, respectively) can exert noticeable influence on the mixture properties. It should 
also be noted that the coefficients ~ij(6) enter into all the transport equations in the form 
of the expression xi[l +~ij(6)]; hence, to estimate the influence of the convergence of ~ij 
(6) on the mixture properties is is necessary to examine the product xi~ij(6). For partially 
and fully ionized air (xE~O.l), the coefficients kTc(6), kTE(6) , ~En(6) practically converge 
in the third approximation (here the second approximation differs form the third by 10-20%). 
For a mixture consisting of practically just neutral components when XE~10 -5, the coefficients 
kTi(6) and ~ij(~) are negligible; consequently thermodiffusion and the correction coefficients 
~ij(6) to the binary diffusion coefficients in Aij cannot be taken into account here. 

In the weakly ionized gas area (x E = 10 -3 ) the convergence of the coefficients kTi(6) 
and ~ij(6) is poor. It turns out that for weakly ionized air, in a computation of %(~), kTi(6), 
and ~ij(~) in a fourth approximation (6 = 4)a singularity appears which is manifested by the 
fact that the principal determinant detllqrs[ [ in the denominators of 91.13) and (i.14) vanish- 
es. In a practical computation of the coefficients ~EN, say, this singularity is apparent 
as an abrupt rise in the values of the coefficients in a narrow region in the neighborhood of 
this point. The behavior of the coefficients ~EN in different approximations 6 is displayed 
in the figure: Values of ~EN computed in a second approximation in ~ are shown by solid lines, 
while values of ~EN computed in a fourth approximation are shown by dashes. Disappearance of 
the denominator in the transport coefficients for 6 = 4 is apparently associated with the na- 
ture of the behavior of the interaction sections of the ionized nitrogen components since for 

= 4 the appropriate formulas have a singular point for weakly ionized nitrogen, while no such 
singularity occurs in the case of purely weakly ionized oxygen. 

The existence of singular points and the convergence of the transport coefficients in the 
weak ionization domain require additional investigations and execution of computations in 
higher approximation of 6 (6 > 4). However, it should be noted that the poor convergence of 
the transport coefficients in the weak ionization domain has practically no effect on the 
properties of the mixture as a whole since all the coefficients with poor convergence in this 
area (kTc(~), kTn(6), Xc~cc(6), XE~En(6)) turn out to be small and yield no noticeable con- 
tribution to the transport coefficients, while the convergence of all the coefficients be- 
comes rapid as the degree of ionization grows. 
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More detailed data, needed for a detailed analysis of the transport coefficients con- 
sidered, are presented in reports for the Institute of Mechanics of Moscow State University 
[13, 24]. 

Remark i. Writing the mass transport equations of the components in the form (i.ii) and 
(1.12) is quite convenient for the solution of problems if the element diffusion fluxes J~ 
(j = i, ..., L), and the reaction product diffusion fluxes Ji (i = L + i, ..., N) are intro-J 
duced together with the desired concentrations c i (i = i, ..., N) as the new desired quanti- 
ties. It is then not necessary to solve (i.ii) and (1.12) for the fluxes and to substitute 
them into (1.5) and (1.6), but it is possible to write the diffusion-kinetic system of equa- 
tions (1.5), (1.6), (i.ii), (1.12) in the case of a parabolic approximation, in the normal 
Cauchy form for the derivatives of c i (i = i, ..., N) and J~ (j = i ..... L), Ji (i = L + i, 
..., N) for which effective numerical methods of solution have been developed [19]. In such 
an approach, multicomponent diffusion coefficients or their analogs do not appear. 

R ema!k 2. The relationship between the coefficients %(~) and kTi(~) , respectively, and 
the heat conduction coefficients and the multicomponent thermodiffusion coefficients intro- 
duced in [4] is discussed in detail in [17]. 
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HYDRODYNAMICS OF A STF~TIFIED LIQUID IN THE TErmINOLOGY OF THE LAMB MOMENTUM DENSITY 

G. A. Kuz'min UDC 532+533 

The wave motion of a stratified fluid is not separated from the vortex component in the 
Navier--Stokes equations. This makes the analysis of motion difficult in the nonlinear case 
when the wave and vortex components can reciprocally generate each other. Consequently, a 
description of the nonlinear dynamics of a stratified fluid in the terminology of the velocity 
or vorticity fields is not optimal and selection of other variables, whose evolution in time 
would be mutually less dependent, is desirable. 

As is shown in [i, 2], a particular class of ideal stratified media motions exists which 
conserve their form under arbitrary levels of nonlinearity. In an incompressible fluid these 
are the motions whose velocity field can be expressed in terms of the density p and scalar 
functions %, ~ by the formula [2] 

pv = - v ~ +  ~vp. (1 )  

In the terminology of the functions introduced, the fluid dynamics turns out to be Hamiltonian 
while %, p are canonically conjugate variables. The wave motions that are described by such 
variables possess vorticity. However, the class of motions (i) is constrained, and they can 
be considered analogs of potential motions of a homogeneous fluid [2]. 

In this paper, a representation is obtained for the velocity field of an incompressible 
fluid, which generalizes (I) and yields a partition of the total motion into separate compo- 
nents. This representation results in a natural manner from the equations of motion if they 
are first written in the terminology Of a new variable, the Lamh momentum density. The equa- 
tions obtained are converted to Hamiltonian form. They can be used to search for the Lagrange 
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